Pressure forcing and dispersion analysis for discontinuous Galerkin approximations to oceanic fluid flows

نویسنده

  • Robert L. Higdon
چکیده

This paper is part of an effort to examine the application of discontinuous Galerkin (DG) methods to the numerical modeling of the general circulation of the ocean. One step performed here is to develop an integral weak formulation of the lateral pressure forcing that is suitable for usage with a DG method and with a generalized vertical coordinate that includes level, terrain-fitted, isopycnic, and hybrid coordinates as examples. This formulation is then tested, in special cases, with analyses of dispersion relations and numerical stability and with some computational experiments. These results suggest that the advantages of DG methods may significantly outweigh their disadvantages, in the settings tested here. This paper also outlines some other issues that need to be addressed in future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple time scales and pressure forcing in discontinuous Galerkin approximations to layered ocean models

This paper addresses some issues involving the application of discontinuous Galerkin (DG) methods to ocean circulation models having a generalized vertical coordinate. These issues include the following. (1) Determine the pressure forcing at cell edges, where the dependent variables can be discontinuous. In principle, this could be accomplished by solving a Riemann problem for the full system, ...

متن کامل

Analysis of the Discontinuous Galerkin Interior Penalty Method with Solenoidal Approximations for the Stokes Equations

Discontinuous Galerkin (DG) methods have become very popular for incompressible flow problems, especially in combination with piecewise solenoidal approximations [2, 4, 5, 7, 12, 13, 14, 15]. In the context of conforming finite elements, solenoidal approximations were derived by Crouzeix and Raviart in [6], allowing one to obtain a formulation involving only velocity. Nevertheless their impleme...

متن کامل

Convergence of a Galerkin Method for 2-D Discontinuous Euler Flows

We prove the convergence of a discontinuous Galerkin method approximating the 2-D incompressible Euler equations with discontinuous initial vorticity: ω0 ∈ L2(Ω). Furthermore, when ω0 ∈ L∞(Ω), the whole sequence is shown to be strongly convergent. This is the first convergence result in numerical approximations of this general class of discontinuous flows. Some important flows such as vortex pa...

متن کامل

Discontinuous Galerkin Finite Element Discretization for Steady Stokes Flows with Threshold Slip Boundary Condition

This work is concerned with the discontinuous Galerkin finite approximations for the steady Stokes equations driven by slip boundary condition of “friction” type. Assuming that the flow region is a bounded, convex domain with a regular boundary, we formulate the problem and its discontinuous Galerkin approximations as mixed variational inequalities of the second kind with primitive variables. T...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 249  شماره 

صفحات  -

تاریخ انتشار 2013